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ABSTRACT 

This research addresses the problem of determining the location of a pulmonary nodule in a radiograph with the aid of a 
pre-existing computed tomographic (CT) scan. The nodule is segmented in the radiograph using a level set segmentation 
method that incorporates characteristics of the nodule in a digitally reconstructed radiograph (DRR) that is calculated 
from the CT scan. The segmentation method includes two new level set energy terms. The contrast energy seeks to 
increase the contrast of the segmented region relative to its surroundings. The gradient direction convergence energy is 
minimized when the intensity gradient direction in the region converges to a point. The segmentation method was tested 
on 23 pulmonary nodules from 20 cases for which both a radiographic image and CT scan were collected. The mean 
nodule effective diameter is 22.5 mm. The smallest nodule has an effective diameter of 12.0 mm and the largest an 
effective diameter of 48.1 mm. Nodule position uncertainty was simulated by randomly offsetting the true nodule center 
from an aim point. The segmented region is initialized to a circle centered at the aim point with a radius that is equal to 
the effective radius of the nodule plus a 10.0 mm margin. When the segmented region that is produced by the proposed 
method is used to localize the nodule, the average reduction in nodule-position uncertainty is 46%. The relevance of this 
method to the detection of radiotherapy targets at the time of treatment is discussed. 

Keywords: level-set segmentation, digital radiography, pulmonary nodule, computed tomography, radiation oncology, 
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1. INTRODUCTION 
The automatic localization of an object in a radiograph is of practical importance because it can enable radiography to be 
used for near real-time object detection and localization during medical procedures, such as radiotherapy of pulmonary 
nodules. However, the segmentation of an object in a radiograph is generally very difficult to achieve because a 
radiographic image is a superposition of the radio densities of all material in the path of the X-ray beam. Structures that 
overlap and surround the object of interest often confound segmentation methods. However, when prior images of the 
object are available, such as a 3D medical image that contains the object, powerful segmentation methods can be used 
that incorporate the prior information.1–4 The purpose of this paper is to describe a method that was developed for the 
segmentation of pulmonary nodules in radiographs using computed tomography (CT) scans as prior images.   

In the segmentation method, the contour of the segmented region in a radiograph is represented by a level-set function 
(LSF).5 An energy is defined that depends on the LSF and its derivatives, which is minimized when the contour of the 
segmented region matches the contour of the nodule. The calculus of variations is used to derive evolution equations that 
iteratively modify the LSF to reduce the energy. Included in the energy is a prior energy term that is minimized when the 
contour matches the contour of the nodule in a digitally reconstructed radiograph (DRR), which is calculated from a CT 
scan. In addition, the segmentation method includes two new level-set energy terms. The “contrast energy” seeks to 
increase the contrast of the segmented region relative to its surroundings. The “gradient direction convergence” (GDC) 
energy is minimized when the intensity gradient direction in the region converges to a point. The segmentation method 
was tested on 23 pulmonary nodules from 20 cancer cases for which both a radiographic image and CT scan were 
collected. 
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The method of nodule segmentation is outlined in Figure 1. The steps on the left side of the figure occur in a planning 
phase. In the first step in the planning phase a CT scan of the patient is acquired that includes the nodule. In the next 
step, the boundary of the nodule is delineated in each CT slice in which it appears. Next, a DRR is computed from the 
CT scan data using the location of a simulated source and detector that matches the geometry of the radiographic system 
that is used in the treatment phase. In the calculation of the DRR a record is maintained of the X-rays that pass through 
the nodule. This information is then used to produce a contour of the projection of the nodule in the DRR. In the last step 
in the planning phase a LSF is calculated for a region that corresponds to the nodule's projection in the DRR. This LSF is 
used as the prior LSF in the segmentation method. 

The steps of the treatment phase are shown on the right side of Figure 1. In the first step a radiograph is captured of the 
region around the nodule. The radiograph is preprocessed in the next step in order to facilitate the nodule segmentation 
process. In the following step a LSF is initialized that corresponds to a circular region in the radiograph that is centered 
at a point that is the expected location of the nodule. The purpose of the next series of steps in the treatment phase is to 
evolve this LSF until it defines a contour that matches the actual contour of the nodule.  

The evolution of the LSF for the radiograph is divided into coarse and fine steps. In the coarse step energy terms are 
minimized that are useful even when the current region contour is far from the contour of the nodule. A new energy term 
that is used in this step is the contrast energy, which is described below. The coarse segmentation step often results in 
more than one connected region. For this reason, it is followed by a step in which a single connected region that best 
matches the prior is selected, and the LSF is reinitialized for the contour of the selected region. 

The purpose of the fine LSF evolution step is to provide an accurate contour for the nodule that precisely determines its 
position in the image. In this step energy terms are minimized that are of value when the current region contour is close 
to the actual contour of the nodule. An important energy term in this step is the GDC energy that is described below. The 
fine LSF evolution step results in a preliminary contour of the nodule region. This mask is processed further in a post-
processing step in order to obtain the final region contour. 

2. MATERIALS 
2.1 CT scans 

CT scans of pulmonary nodule cases were obtained from Toronto General Hospital. The images were captured with a 
GE Medical Systems LightSpeed QX/i scanner. The slice thickness is 5.0 mm, slice spacing 5.0 mm, in-slice pixel 
spacing 0.703 mm, and peak voltage 120 kV. Nodule contours were manually delineated using a drawing tool for each 
slice in which the nodule appears. The effective diameter of a nodule is estimated based on the nodule’s volume in the 
CT scan using the equation, 
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where V is the volume of the nodule in the CT scan. The effective diameter of the nodules is listed in the second column 
of Table 2.  

2.2 Radiography 

Posterior-anterior (PA) chest radiographs of the pulmonary nodule cases were obtained from Toronto General Hospital. 
Radiographs were captured with a Kodak DirectView CR system. The digitized radiographs have an inter-pixel spacing 
of 0.168 mm. The location of nodules in the radiographs (radiograph nodule truth) was manually delineated using a 
drawing tool with the guidance of a board-certified radiologist. All processing was preformed on an 80.0 × 80.0 mm 
region of interest (ROI) in the radiograph. The ROIs are selected based on the location of a nodule in the radiograph as 
described below. 



 

 

3. METHODS 
3.1 DRR calculation 

The method that is used to calculate DRRs is as described by Sherouse.6 X-rays are traced from a simulated source point 
to each pixel in a simulated detector through the CT data. The CT value at an X-ray point is obtained by trilinear 
interpolation of the CT values at the eight corner points of the voxel that contains the point. In the DRR generation 
process, a record is made of X-rays that pass through the nodule and the amount of density the nodule contributes to the 
integral density along each X-ray. The pixels in the DRR that are associated with X-rays that pass through the nodule 
define the region of the nodule's projection in the DRR. 

3.2 Preprocessing the radiograph 

The radiograph is preprocessed in order to remove low-frequency intensity gradients and achieve a standard intensity 
mean and standard deviation. The removal of low-frequency intensity gradients increases the robustness of downstream 
processing. Low-frequency intensity gradients are removed by fitting the image intensities to a third-order bivariate 
polynomial. This polynomial is then subtracted from the image. Next, a linear transformation is applied to the intensities 
of the difference image that results in an image with a mean intensity of 2000 and intensity standard deviation of 600. 
The nodules are then enhanced relative to normal anatomy by the application of gray-scale morphological operations 
using Gaussian and bone-like templates .28 

3.3 Level-set segmentation theory 

3.3.1 Minimization of energy integral with levels sets 

In the image domain Ω , the segmented region R is represented by a LSF ),( yxφ using the convention that ),( yxφ  > 
0 inside the region. Two methods are commonly used to evolve the LSF from its initial state to a function with zero level 
set ),( yxφ  = 0 at the desired region contour. Sethian uses an equation of motion that drives movement of the contour 
at a velocity that approaches zero as the desired contour is reached.7 Alternatively, Chan and Vese define an energy in 
terms of the level-set function that is minimized when the zero level set is at the desired contour.8 In this work the energy 
minimization approach to level-set segmentation is used.   

An energy is defined that is dependent on the segmented region R, the radiographic image data I (x, y), and the 
characteristics of the prior, which in this case, is the nodule in a DRR that is calculated from the CT scan. The 
segmentation process requires finding the LSF that minimizes this energy. With the exception of energy terms that 
depend on the prior, the energy terms are of the form, 

∫∫
Ω
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This integral is minimized with respect to φ (x, y) using the calculus of variations for the case of several independent 
variables.9 Application of the calculus of variations to Eq. (2) leads to the partial differential equation (PDE) for the 
evolution of the LSF, 
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3.3.2 Contrast energy 

Segmentation methods that involve energy minimization often use the Mumford-Shah energy, which is minimized when 
the image inside and outside a region R are homogeneous.10,11 The integrand for this energy is, 
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where 
avg
inI is the average image intensity within R, 

avg
outI is the average intensity outside R, and H(z) is the Heaviside 

function. Inserting Eq. (4) into Eq. (3) results in the evolution equation for the Mumford-Shah energy, 
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where δ (z) is the delta function. 

The Mumford-Shah energy is not suitable for the segmentation of a nodule in a radiograph because the image intensity 
in the nodule region is usually not homogenous because of overlapping tissue. In addition, a region-based energy should 
take into account that nodules have positive contrast relative to their surroundings. In place of the Mumford-Shah 
energy, the region-based contrast energy is introduced, which is minimized when the segmented region has a positive 
contrast relative to its surroundings. The contrast energy has the integrand, 
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where 
high
inI is the intensity at 2.0% penetration at the top of the histogram of intensities inside the region, and 

low
outI is 

the intensity at 2.0% penetration at the bottom of the histogram of intensities outside the region. Using histograms to 
determine extreme intensity values, rather than using minimum and maximum values, makes the contrast energy less 
susceptible to image noise. Inserting Eq. (6) into Eq. (3) results in the evolution equation for the contrast energy, 
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3.3.3 Gradient direction convergence energy 

As discussed above, a nodule in a radiograph is often obscured by overlapping tissue, which results in a large variation 
of intensity in the nodule region. For example, if a rib partially overlaps with the nodule, the intensity will be much 
greater inside the overlapped region than outside the overlapped region. Researchers in the field of computer-aided 
detection of pulmonary nodules have developed features for nodule detection that minimize the effect of overlapping 
tissue. One of the most robust features for nodule detection is the convergence of the image's intensity gradient direction 
to a central region.12 The gradient within an approximately spherical nodule points to the nodule’s center, even when a 
portion of the nodule overlaps with a structure that has approximately uniform density, such as a rib. This feature is 
added to the segmentation method in the form of an energy term that decreases when the gradient at locations inside R 
are directed towards a point. The energy integrand for this GDC energy is, 
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where ),( yxgrθ is the direction of the image intensity gradient at location (x, y) and ),( yxoθ is the direction from the 
point (x, y) to (xo, yo). The point (xo, yo) is set at the center of the segmented region and is updated as the region evolves. 
Inserting Eq. (8) into Eq. (3) results in the evolution equation for the GDC energy, 
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3.3.4 Curvature energy 

The purpose of the curvature energy is to penalize regions with a complicated contour. The energy integrand for the 
curvature energy is, 
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Inserting Eq. (10) into Eq. (3) results in the evolution equation, 
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3.3.5 Prior energy 

The prior energy term is minimized when the LSF for the segmented region in the radiograph matches the registered 
LSF for the nodule in the DRR. The symmetric prior energy of Cremers and Soatto is used, which has the integrand,1 
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where φp is the LSF of the prior, and )(φh is a the normalized Heaviside function, 
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The segmentation of a nodule in the radiograph using this prior energy term is a joint segmentation-registration process. 

This is seen in Eq. (12), where the LSF of the prior depends on coordinates ),( yxx p and ),( yxy p in the domain 

Ω p of the prior DRR image, which are related to coordinates (x, y) in the radiograph by a rotation and translation, which 
has the general form, 

),,,,( yx
p

p ttyxg
y
x

θr
=⎥

⎦

⎤
⎢
⎣

⎡
, (14) 

where θ is the angle of rotation, and tx and ty are the components of the translation vector.  

The evolution equation for the LSF for the energy integrand in Eq. (12) is,  
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The parameters θ, tx, and ty in the registration transform in Eq. (14) also have associated evolution equations that are 
obtained by taking the derivative of the prior energy with respect to each parameter and using the gradient decent 
method to minimize the energy. The evolution equation for θ is, 
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where 
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where gx and gy are the x- and y-component of the vector g, respectively. The evolution equation for tx, and ty are 
identical to Eqs. (16)–(18) with tx and ty substituted for θ. 

3.3.6 Contraction energy 

A contraction energy is added so that the initial contour has a tendency to decrease in area. The integrand for the 
contraction energy is, 
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Inserting Eq. (18) into Eq. (3) results in the evolution equation, 
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3.4 Level-set segmentation implementation 

3.4.1 Image preparation 

In order to reduce image noise, the full-resolution image is blurred with a Gaussian filter before segmentation. The filter 
size is 9 × 9 pixels, and the Gaussian distribution has a standard deviation of 7.0 pixels.   

3.4.2 Heaviside and delta functions 

In level-set implementations, a regularized Heaviside function is used that has a finite transition between zero and one. 
In our implementation the function used is, 
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where ε is a constant that determines the width of the transition region. The delta function that is consistent with Eq. 
(21),  
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is obtained by taking the derivative with respect to z.  

In the formulation of energy terms, the factor ( ))(1 φH− is used to define points that are outside the segmented region. 
In practice, it is necessary to further limit this outside region to points that immediately surround the segmented region; 
otherwise, statistical quantities, such as the low intensity outside the region in Eqs. (6) and (7), will depend on all image 
points regardless of the distance from the segmented region. Consequently, segmentation results will depend on the field 
of view of the processed radiograph. For this reason, the outside region is limited to points for which 

0),( <≤ yxφβ , (23) 

where β is a negative constant. 

3.4.3 Level-set function initialization 

The initial segmented region in the radiograph is always initialized to a circle that is centered at the middle of the ROI 
image. In this case, the LSF is initialized to a signed distance function using the equation,  
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where r is the radius of the initial region and ),( cc yx  is the center of the region.  

The LSF for the nodule region in the DRR image is initialized to a signed distance function by solving the differential 
equation, 
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where Imask is the mask of the nodule region in the DRR, and 
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The method of solving the differential Eq. (25) is described by Sussman et al.13 

3.4.4 Transform between radiograph and DRR 

The transform in Eq. (14) from the image domain of the radiograph Ω to the image domain of the DRR Ω p is chosen to 
uncouple the evolution equations for θ, tx, and ty. The transformation used is: 
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where ),( c
p

c
p yx is the center of the prior shape. The inverse transformation of Eq. (27), which maps a point in the 

DRR to the radiograph, is a rotation around the center of the nodule in the DRR plus a translation. 



 

 

3.4.5 Evolution of level-set function 

In each time increment in the coarse and fine evolution steps of the LSF, the change in the function is a weighted sum of 
the time derivatives of ),( yxφ for each of the energies,  
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where λcontrast is the weight for the contrast energy, λcurvature is the weight for the curvature energy, λGDC is the weight for 
the gradient direction convergence energy, λprior is the weight for the prior energy, and λcontraction is the weight for the 
contraction energy. The parameter values that are used in both steps are summarized in Table 1. The transform 
parameters θ, tx, and ty. in Eq. (27) are initialized to zero and updated in each time increment according to Eqs. (16)–(18) 
forθ and analogous equations for tx and ty.   

LSF evolution ends when a time increment fails to change a specified energy. In the coarse LSF evolution step, a 
minimum of 50 and a maximum of 150 time increments are performed. After the minimum number of increments, if the 
contrast energy changes by less than 0.20% in a time increment, LSF evolution is stopped. In the fine LSF evolution 
step, a minimum of 5 and a maximum of 10 time increments are performed. After the minimum number of increments, if 
the GDC energy changes by less that 1.00% in a time increment, LSF evolution is stopped.  

3.5 Region selection and level-set function reinitialization 

The segmented region from the coarse LSF evolution step often consists of two or more disconnected regions. 
Furthermore, a single connected region may consist of several distinct regions that are connected by only a few bridge 
pixels. For this reason, before region selection, the segmented region mask is eroded by a binary morphological filter in 
order to break up slightly connected regions. The size of the morphological filter is set to 15% of the equivalent diameter 
(see Eq. (1)) of the prior in order to prevent the mask of a small nodule from being erased in the erosion process. Next, 
the connected region mask that has the highest normalized cross-correlation with the mask of the registered prior is 
selected, and all other regions are removed. The selected region is dilated by a binary morphological filter, which is the 
same size as the erosion filter, to undo the effect of the erosion on the selected region. Finally, the LSF is reinitialized to 
a signed distance function for the selected region using Eqs. (24) to (26). 

3.6 Post-processing of the region mask 

Post-processing occurs after the fine LSF evolution step. Because the input to this step is a connected region, and it only 
refines the region’s contour, the output of this step is usually a single connected region. When this is not the case, region 
selection is again applied in this step. The step ends with a flood-fill operation in order to remove small holes in the 
region.  

4. RESULTS 
The method of level-set segmentation with a CT prior was tested on 23 nodules from 20 cancer cases for which both a 
CT scan and radiograph were collected. Figure 2 illustrates the steps in the method for nodules 9, 19, and 23 in the first, 
second, and third row, respectively. Column (a) shows a CT slice in which the nodule is visible with a green contour 
around the nodule. Column (b) shows the DRR with a blue contour outlining the projection of the nodule. Column (c) 
shows a ROI in the radiograph with a green contour around the true location of the nodule. In all cases, the true nodule 
center is horizontally and vertically displaced by 10 mm from the ROI center which is marked by a yellow dot. Column 
(d) shows the preprocessed ROI, with green truth contour. The initial segmented region contour is in red, and the initial 
prior contour is in blue. Column (e) shows the green truth contour, the final segmented region contour in red, and 
registered prior contour in blue.  

The effectiveness of the proposed method for the reduction in the uncertainty of the location of a nodule in a radiograph 
was tested by running the segmentation method 100 times. For 9 of the runs, the aim point is on a 3 × 3 10 mm grid with 
the true nodule location at the grid’s center. The other 81 times, the aim point is located at a random horizontal and 



 

 

vertical displacement of between 0.0 and 10.0 mm from the nodule’s center. The segmented region is initialized to a 
circle that is centered at the aim point with a radius equal to the effective radius of the nodule plus a 10.0 mm margin. 
The ROI is an 80 × 80 mm region of the radiograph with the aim point at its center. Figure 3 shows the segmentation 
results for nodule 4 for the 9 aim points on the 3 × 3 10 mm grid. The aim point at the center of the ROI is indicated by 
the yellow dot. The contours are as displayed in column (e) in Fig. 2. 

The results of this experiment are shown in Table 2. The third column in Table 2, Seg. Region Overlap With True 
Nodule Region, is given by, 
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where segA  is the area of the segmented region, and truthA is the true nodule area.14 The results are presented in the form 
of average ± standard deviation (minimum, maximum) values. Column 4, Nodule Position Offset (mm), is the distance 
between the true nodule center and the aim point. In all cases, the minimum distance is 0.0 mm and the maximum 
distance is 14.14 mm. Column 5, Seg. Region to Nodule Position Error (mm), is the distance between the center of the 
segmented region and the true nodule center. A measure of the effectiveness of the method is the average percent error 
reduction when the center of the segmented region is used as the nodule center instead of the aim point. This quantity is 
expressed as, 
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where avg
aimnoduleD −  is the average distance between the true nodule center and aim point, and avg

segnoduleD −  is the average 
distance between the true nodule center and center of the segmented region. The average percent error reduction is in 
column 6 of Table 2. 

The treatment phase of the algorithm has a runtime of 12.74±3.25(7.00,22.00) seconds on a 2.33 GHz Intel® Core™2 Duo 
Desktop Processor E6550 with 3.48 GB of RAM for the set of 23 nodules. 

5. DISCUSSION 
Computer detection of pulmonary nodules in chest radiographs has been studied extensively.15–17 Although, powerful 
image processing technology has been developed, the detection of nodules in radiographs is hampered by the 
superimposition of normal anatomy on the nodule and other tissue that can be mistaken for a nodule. For this reason, 
emphasis has shifted to computer detection of nodules in 3D medical images, such as CT scans, for which image 
reconstruction eliminates the superposition problem.18,19 However, projection radiography still has advantages relative to 
CT, including lower radiation dose, faster image captures times, and simpler hardware. This research is motivated by the 
idea that, as 3D medical images become increasingly more available, the 3D images can serve to extend the applications 
of projection radiography. The information on an object of interest that is contained in a 3D image can be used to 
substantially overcome the superposition problem that is inherent in a projection radiograph. An example application is 
the use of a CT radiotherapy planning image to aid in the computer detection of the radiotherapy target in radiographs, 
which are captured during treatment. 

The localization of pulmonary nodules during radiotherapy is of considerable interest because nodule motion caused by 
respiration results in an uncertainty of a nodule’s location during treatment.20 Nodule location uncertainty can be reduced 
by capturing the planning image and treating the tumor, all while the patient is in the same respiratory state. However, 
considerable margins are still required. For example, at the University of Rochester Medical Center, stereotactic 
radiation treatment of pulmonary nodules is performed using end-expiration breath holding with treatment margins of 7 
× 7 × 10 mm. Using a variety of respiratory gating methods, many other treatment centers performing pulmonary SRT 
employ similar margins, typically 10 mm, to account for setup and positioning errors.21 

Researchers have developed methods to decrease the uncertainty of pulmonary nodule location during treatment by 
radiographic imaging of the region of the target nodule.22,23 One means of overcoming the difficulty of directly detecting 



 

 

the location of the nodule is to implant metal markers nearby. The markers can then be tracked in real-time using a 
fluoroscope.24 Recent work has focused on eliminating the need for implanted markers because of the evasiveness of the 
implantation procedure, and the motion of the markers may not be perfectly correlated with the motion of the nodule. 
Schweikard, Shiomi, and Adler captured a planning-phase CT image at inhalation and exhalation.25 CT scans for 
intermediate respiratory states are obtained by interpolation. Pretreatment DRRs are calculated from the CT data sets. In 
the treatment phase, the DRRs are matched with radiographs that are captured periodically. The CT data set that was 
used to generate the best-matching DRR provides the location of the target.  

The segmentation method that is described in this report can form the basis of another approach to nodule position 
detection. The CT scan provides information on the shape of the nodule, but nodule detection does not rely on a match 
between a DRR and a radiograph. A good match may not occur if the configuration of the patient differs in the planning 
and treatment phase. In addition, a method of target detection that uses segmentation, feature extraction, and 
classification, is inherently quicker and, therefore, better suited for near real-time applications than a method that relies 
on matching with a large number of reference images. 

This segmentation method was tested on radiographs that were captured at normal incidence, because they were the only 
images available for this study. In a target-detection system for radiation therapy, the radiographs may be captured at 
oblique incidence. Radiographs that are captured at oblique angles have more problems with superposition of the 
anatomy on the nodule because of greater path length through the patient of the X-ray beam. However, this effect can be 
offset by optimizing the detectability of the nodule in the radiograph by configuring the radiographic system, based on 
an analysis of the CT scan, so that interference from superimposed tissue is minimized.26,27 

6. CONCLUSION 
A level-set segmentation method is described that successfully locates pulmonary nodules in a chest radiograph. In this 
method an energy term is used that compares the segmented region to the nodule in a DRR, which is calculated from an 
existing CT scan. Also, additional energy terms are introduced that depend on the contrast of the region and intensity-
gradient direction convergence. The method was tested on 23 pulmonary nodules. An experiment was performed in 
which the region was initialized at points that were distributed about the true nodule center. The results of this 
experiment show that the segmentation method reduces uncertainty of nodule location by 46%. 
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Table 1. Processing conditions and parameter values for coarse and fine steps of the level-set segmentation method. 
Parameter Coarse 

Steps 
Fine Steps Parameter Coarse Steps Fine Steps 

ROI Size (mm) 80 × 80 80 × 80 λcontaction 50 0 
Pixel Spacing (mm) 0.336 0.168 λGDC 0 50 
dt 1.0 1.0 λcurvature 50 20 
ε  3.00 3.00 λprior 1000 1000 
β -20.0 -20.0 Min/Max Time 

Increments 
50/150 5/10 

λcontrast 2000 500 Stop Condition <0.20% Energy 
Change 

<1.0% Energy 
Change 

 

 

 

Table 2. Nodule segmentation results for random nodule position offsets from an aim point. 
Nodule de 

(mm) 
Seg. Region Overlap With 

True Nodule Region 
Nodule Position 

Offset (mm) 
Seg. Region to Nodule 
Position Error (mm) 

% Nodule 
Position Error 

Reduction 
1 20.75 79.51±1.65(73.74,81.83) 7.87±3.10 2.00±0.34( 1.17, 2.85) 74.56 
2 39.11 80.87±5.32(61.01,88.89) 7.67±3.14 4.65±1.79( 0.98,10.78) 39.43 
3 23.49 80.67±1.17(74.38,82.62) 8.16±2.99 2.24±0.06( 1.99, 2.37) 72.52 
4 21.96 80.00±1.33(78.04,86.18) 7.85±3.10 2.16±0.21( 1.28, 2.62) 72.49 
5 19.06 76.42±7.76( 6.65,81.41) 8.00±3.01 1.27±1.14( 0.40,12.08) 84.12 
6 26.64 85.43±3.92(74.08,91.08) 8.40±2.85 2.33±1.01( 0.27, 4.83) 72.21 
7 13.88 69.48±15.41( 0.00,79.46) 8.22±3.11 1.66±3.47( 0.13,25.94) 79.81 
8 26.42 76.05±11.35(22.83,87.77) 8.03±2.95 4.24±2.98( 1.29,18.87) 47.15 
9 21.03 61.47±3.95(41.66,68.36) 8.04±2.88 1.83±1.49( 0.30, 8.85) 77.21 
10 20.99 48.66±2.84(39.82,55.60) 7.53±3.10 4.62±1.51( 0.56, 7.42) 38.65 
11 29.23 75.02±7.20(17.38,82.71) 7.44±3.16 3.46±2.04( 0.13,16.97) 53.57 
12 19.11 40.25±34.95( 0.00,87.15) 8.03±2.88 11.40±8.71( 0.69,24.37) -41.96 
13 17.59 44.19±2.17(39.74,49.90) 7.71±3.08 3.69±0.24( 3.06, 4.14) 52.17 
14 31.13 56.66±7.08(44.81,76.03) 8.29±3.07 6.95±2.56( 0.65,11.80) 16.18 
15 12.07 42.34±34.13( 0.00,91.40) 7.46±3.11 6.89±5.18( 0.47,25.66) 7.68 
16 48.19 66.49±4.56(51.75,73.50) 7.56±3.28 7.26±3.17( 1.08,14.60) 3.93 
17 28.95 69.27±10.36(40.68,82.99) 8.00±3.08 4.47±2.84( 0.73,11.69) 44.08 
18 14.54 46.98±6.04(29.93,61.53) 7.86±3.22 4.12±1.90( 0.77, 9.31) 47.55 
19 14.93 70.21±18.43( 3.58,84.42) 8.31±3.04 3.42±2.79( 1.49,14.36) 58.81 
20 22.62 49.84±9.85( 0.04,56.90) 7.54±3.27 7.55±2.63( 4.77,22.16) -0.10 
21 15.27 78.11±2.15(72.44,83.03) 7.98±3.09 0.82±0.39( 0.03, 1.63) 89.68 
22 17.42 48.84±26.36( 0.00,77.52) 8.03±3.32 7.93±8.84( 1.71,26.53) 1.16 
23 15.31 63.10±9.13(16.45,71.53) 7.85±3.20 2.52±2.60( 0.03,14.64) 67.86 

Avg 22.59 64.77 7.90 4.23 46.03 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Steps of the method for nodule detection in a radiograph using a CT prior. 
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Fig. 2. Summary of processing steps for nodules 9, 19, and 23. 
 

 
Fig. 3. Segmentation for 10 mm offsets from the aim point for nodule 4. 


