UF UNIVERSITY of **FIORIDA**

I. INTRODUCTION

- Detailed characterization of vascular anatomy is important for the diagnosis and management of a variety of pulmonary vascular diseases including bronchopulmonary dysplasia in premature infants¹, adult chronic pulmonary hypertension, and the effects of radiation toxicity to lung vasculature in cancer patients.²⁻⁵
- Clinical estimates of vessel radii from 3D X-ray computed tomography (CT) datasets are unreliable because they are highly dependent on the selected intensity threshold, background image noise, and human subjectivity.
- We developed Gatortail (U.S. patent #9,471,989)⁶ to objectively estimate vessel size by mathematically modeling the CTappearance of each vessel and determining the vessel trajectory and 3D surface to match the patient's CT image.

OBJECTIVE Validate the ability of the Gatortail method to accurately compute vessel diameter using a realistic physical phantom of a human subject's right lower-lung vascular tree.

II. METHODOLOGY

PHANTOM CREATION

- We segmented and modeled the 3D arterial vasculature from the CT scans of the patient's lower-right lung using software developed in our lab, where each branch is modeled as a tube-like structure along a curvilinear trajectory in 3D space.
- We created 3D physical model of the patient's lung vascular tree in ABS plastic via 3D printing.
- We scanned the physical phantom in a conventional clinical CT scanner with kVp 120, tube current 163, exposure 150, and voxel dimensions 0.8457x0.8457x1.0 mm.

PHYSICAL MEASUREMENTS

- We manually labelled each branch of the physical phantom with a unique number.
- We measured each of 74 branches in the physical phantom using digital calipers, 3 times each by investigators blinded to the results from the vessel optimization algorithm.
- We recorded our measurements and computed an average radii of each branch based on the 3 measurements.

Figure 1: Physical vascular tree phantom. [A] is a photograph of the 3D vascular tree physical model as 3D printed in ABS plastic based on the initial extraction and modeling of the lower right hemi-lung of a human volunteer from a chest CT scan. [B] is an augmented maximum-intensity projection of the CT scan of the physical model from the Gatortail software package. The segmented vessel-pixels are show in transparent gray. The lighter gray pixels represent the extracted centerlines of each branch, labeled in green.

COMPUTATION THROUGH GATORTAIL METHOD

• We processed the CT dataset of the physical model with our in-house software to generate Gatortail-based values for branch radii, with the software-based set of branch numbers.

MATCHING BRANCHES

- We matched each branch on the physical model with the labeled branches of the image-based reconstruction. STATISTICAL ANALYSIS
- We compared the average radii measurements computed by Gatortail with the physical average radii measurements taken from each branch of the physical phantom.
- We performed statistical comparison of the physical measurements and the computed measurements with the branch vessel size to determine to compute the R^2 value of the fit and p-value of the correlation.

ACKNOWLEDGEMENTS

Funding of this work provided through a grant from the state of Florida Bankhead-Coley Cancer Research Program.

VALIDATION OF SIZING OF PULMONARY VESSELS FROM 3D MEDICAL IMAGES

Anne Gormaley¹, David Prida², Shruti Siva Kumar¹, Walter O'Dell^{1,2}

Departments of ¹Biomedical Engineering, ²Radiation Oncology, and ³Radiology, University of Florida, Gainesville FL

III. RESULTS

V. CONCLUSIONS

