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In this study, postimplant seed displacement errors were analyzed using a softassign point match algorithm. Seed locations in the 
postimplant CT image dataset were first matched with the seed positions in the treatment plan. A CT scan was taken 2.5 – 6 hours after 
implantation in four testing cases. The average 3D displacement error was 0.34 ± 0.16 cm (mean ± standard deviation of the displacement error), 
and the percentage of seeds within 0.5 cm discrepancy was 69%. The CT seed locations were matched also with the seed positions estimated using 
actual needle positions tracked intraoperatively using TRUS. The needle position was taken as the transverse 2D location of the seeds implanted 
along the needle. The axial seed locations were assigned as in plan. The average displacement error was 0.31 ± 0.17 cm, and the percentage of 
seeds within 0.5 cm discrepancy was 77%. The seed positions in plan and those from estimation were then matched. The average displacement 
error was 0.16 ± 0.11 cm, and the percentage of seeds within 0.5 cm discrepancy was 99%. This suggests that the seed displacement errors are 
dominated by the movement of the prostate itself, not by the needle insertion procedure.
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To compare the seed locations in postimplant CT image dataset against the planned positions, we used a point match method based on the 
"robust point matching algorithm (RPM)" (Gold et al., 1995; Rangarajan et al., 1996). RPM simultaneously finds homologies 
(correspondences) and similarity transformation parameters (rotation, translation, and scale) between two sets of points. The effectiveness of 
the algorithm comes from two techniques: SoftAssign and deterministic annealing. It is considered robust in that it tolerates noise, and can 
automatically evaluate all evidence and reject outliers. Also, it possess ma strong ability to overcoming local minima and bad initializations. 
In our study, we used this algorithm to match planned seed positions to those localized on postimplant CT for 4 patients where the 
implantation and CT scan were separated by 2.5 – 6 hr. RPM resulted in optimal matching of two point sets so that meaningful, quantitative 
comparisons could be made directly.

The problem of alignment was formulated as a mixed variable 
(binary and continuous) optimization problem: the binary 
variables are the point correspondences and the continuous 
variables are the spatial mapping parameters (rotation, translation, 
and scale). Correspondence is parameterized as a permutation. 
Parameterized in this manner, for any fixed value of the spatial 
mapping parameters, the correspondence problem is mapped into 
the linear assignment problem (Bertsekas and Tsitsiklis, 1989). 
The SoftAssign, a new technique that first arose in the neural 
computation literature (Kosowsky and Yuille, 1994), has been 
shown to find the optimum solution to the assignment problem 
when embedded in a deterministic annealing scheme. When the 
correspondence variables are frozen, a standard least-squares 
problem results that can be solved efficiently for the spatial 
mapping parameters. The RPM algorithm essentially iterates 
between solving for the spatial mapping and the correspondence 
variables at each setting of the temperature (in deterministic 
annealing). Of course, correspondence is never a permutation due 
to the presence of outliers. The SoftAssign within deterministic 
annealing performs outlier rejection in addition to assigning the 
point correspondences. (Rangarajan et. al., 1997)

Assume Xi, i= 1,2,…, N1, and Yj, j= 1,2,…, N2, denotes the 
points in two point sets. N1 and N2 are the numbers of points in 
the sets X and Y, respectively. The RPM algorithm minimizes the 
following objective function:
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Equation (1) describes an optimization problem from which the 
transformation parameters—rotation angle θ, translation t and scale 
s—can be obtained by minimization. In Eq. (1), γ  is a regularization 
parameter which controls the degree of departure of the scale 
parameter from unity. However, Eq. (1) also sets up an optimization 
problem on the point correspondences. A set of correspondence 
variables {Mij—the match matrix—has been defined such that:

Mij = {1 if point Xi corresponds to point Yj;  

          0 otherwise 

Mi(N2+1) = {1 if point Xi is an outlier

                0 otherwise

M(N1+1)j = {1 if point Yj is an outlier

                0 otherwise
The variable Mij  is a correspondence variable which indicates when 
homologies have been found or outliers discarded. The above 
optimization problem in Eq. (1) contains two related optimization 
problems—one on the spatial mapping between the two point sets and 
the other on the point-to-point correspondences between the two point 
sets.
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Table 1 3D displacement errors between seed sets of 4 patients

Patient1

Patient3

Patient2

Patient4

Table 1 shows the 3D displacement errors between different sets of 
seeds, Plan versus CT localized seeds, plan versus TRUS estimated 
seeds, and TRUS estimated versus CT localized seeds. 

Left Figure: shows the sigmoid curve plotting the percent of 
seeds that is within a series of discrepancies of the 4 patient, 
using the CT localized seed positions as the gold standard. The 
blue curve represents the planned seed set, and the red curve 
represents the TRUS estimated seed set.

CT vs. Plan axial view CT vs. Plan coronal view

TRUS estimated vs. Plan 
axial view

TRUS estimated vs. Plan 
coronal view

Above Figure: shows the seeds localized in CT images (red circle, 
upper) and estimated in TRUS (lower) transformed to the planning 
space(seed positions in plan are represented using the blue cross)

The results shown in this study suggests that the seed displacement errors are caused primarily by the movement of the prostate itself during and after 
implantation, and not by the needle insertion procedure.


